Sodium lauryl sulfate
Phân loại:
Thành phần khác
Mô tả:
Sodium lauryl sulfate là gì?
Sodium lauryl sulfate (SLS) là một hóa chất tổng hợp gốc sulfate được sản xuất từ dầu mỏ và thực vật (dừa và dầu cọ).
Chúng ta thường tìm thấy sodium lauryl sulfate trong các sản phẩm làm sạch và chăm sóc cá nhân, bao gồm cả dầu gội. Công dụng chính của SLS là tạo bọt cùng khả năng làm sạch. Tuy nhiên, việc sử dụng sodium lauryl sulfate cũng cần thận trọng vì chất này có thể không hỗ trợ sức khỏe làn da của bạn, nhất là với người mắc bệnh chàm, viêm da hoặc mụn trứng cá. Sodium lauryl sulfate được cho là gây kích ứng da, làm phá vỡ chức năng rào cản của da, gây ngứa, bong tróc, khô và đỏ.

Do đó, nếu sở hữu làn da thiên khô, da nhạy cảm, dễ kích ứng thì không nên dùng các sản phẩm chứa SLS; ngược lại, với làn da nhiều dầu, cần sản phẩm tạo bọt thì có thể lựa chọn sản phẩm chứa sodium lauryl sulfate.
Điều chế sản xuất Sodium lauryl sulfate
Sodium lauryl sulfate được tìm thấy từ gốc dừa/hạt cọ chứa dồi dào chất acid lauric (là một loại chất béo bão hòa). Qua nhiều quy trình thí nghiệm hóa học với sự kết hợp chất từ dầu mỏ và các khoáng chất tự nhiên mà tạo thành hợp chất sodium lauryl sulfate.
Cơ chế hoạt động
Là chất lưỡng tính, sodium lauryl sulfate hoạt động chính ở bề mặt bên ngoài. Hợp chất này sẽ di chuyển đến bề mặt của chất lỏng; đồng thời phát huy vai trò làm giảm sức căng bề mặt nhờ sự liên kết và kết hợp với các phân tử SLS khác.
Sodium lauryl sulfate có thể làm biến tính protein mạnh và ức chế sự lây nhiễm của virus bằng cách hòa tan vỏ bọc virus và làm biến tính vỏ protein/protein capsid. Các nhà sản xuất sẽ sử dụng sodium lauryl sulfate để pha trộn và ổn định hỗn hợp mỹ phẩm.
Dược động học:
Dược lực học:
Xem thêm
Hydroxypropyl cellulose là gì?
Danh pháp quốc tế IUPAC: 4-(1-aminopropyl)-N,N,3-trimethylaniline.
PubChem CID: 123706
Tên gọi khác: Benzeneethanamine, 4-(dimethylamino)-alpha,2-dimethyl-, Oxypropylated cellulose, E463, Hyprolose, Lacrisert.
Công thức hóa học C12H20N2, trọng lượng phân tử 192.30
Hydroxypropyl cellulose là một dẫn chất ete của cellulose, trong đó một số nhóm hydroxyl trong các đơn vị glucose lặp lại được hydroxypropyl hóa tạo công thức OCH2CH(OH)CH3 bằng cách sử dụng propylene oxide.

Do mức độ hydroxypropyl hóa cao (~ 70%), Hydroxypropyl cellulose dẻo hơn và tương đối kỵ nước so với các cellulose ete hòa tan trong nước khác. Nó có thể hòa tan hoàn toàn trong nước và các dung môi hữu cơ phân cực, chẳng hạn như methanol, ethanol, rượu isopropyl (IPA) và acetone. Độ hòa tan của Hydroxypropyl cellulose trong nước phụ thuộc vào nhiệt độ, nó dễ hòa tan ở nhiệt độ dưới “điểm mây” khoảng 45 độ C (nhiệt độ dưới đó mà polyme bắt đầu phân tách pha, và hai pha xuất hiện).
Hydroxypropyl cellulose có hai loại: H-HPC và L-HPC, L-HPC thay thế thấp có chức năng như một chất kết dính và phân hủy trong lĩnh vực dược phẩm.
Hydroxypropyl cellulose là một chất trơ về mặt sinh lý. Trong một nghiên cứu về những con chuột được cho ăn hydroxypropyl cellulose hoặc cellulose không biến tính ở mức lên đến 5% trong chế độ ăn của chúng, người ta thấy rằng cả hai tương đương nhau về mặt sinh học ở chỗ cả hai đều không bị chuyển hóa.
Điều chế sản xuất Hydroxypropyl cellulose
Hydroxypropyl cellulose được sản xuất bằng cách phản ứng cellulose kiềm với propylene oxide ở áp suất và nhiệt độ cao để tạo ra cellulose ete, với 3.4-4.1 mol nhóm thế hydroxypropyl trên mỗi mol đơn vị gốc anhydroglucose (theo Ashland, 2001).
Để Hydroxypropyl cellulose không bị vón cục trong điều chế, Hydroxypropyl cellulose có thể được phân tán trong 50% thể tích nước nóng (> 60 độ C) và sau 10 phút hydrat hóa, phần nước còn lại có thể được thêm nước lạnh trong khi tiếp tục khuấy. Do khả năng kết dính cao, Hydroxypropyl cellulose có xu hướng đặc biệt phù hợp trong chế biến các viên nén liều cao, hoặc khó nén, khi các chất đó chỉ có thể thêm một lượng nhỏ chất kết dính.
Nói chung, sản xuất có thể đạt được bằng hai bước, kiềm hóa và ete hóa:
Bước 1: Kiềm hóa
Phân tán bột giấy cellulose nguyên liệu thô trong dung dịch kiềm (thường là natri hydroxit, 5–50%) để tạo thành cellulose kiềm.
Cell-OH + NaOH → Cell·O-Na+ + H2O
Bước 2: Ete hóa
Phản ứng của Cellulose kiềm với Propylen oxit trong điều kiện được kiểm soát nghiêm ngặt. Trong bước phản ứng này, các nhóm hydroxyl (-OH) trên các monome anhydroglucose của chuỗi cellulose được thay thế một phần bởi các nhóm hydroxypropoxy (–OCH2CHOHCH3) sau khi ete hóa.
Cơ chế hoạt động
Hydroxypropyl cellulose có sẵn trên thị trường với các cấp độ nhớt khác nhau, với cấp trọng lượng phân tử trung bình (MW) nằm trong khoảng từ 20 đến 1500kDa. Các cấp MW thấp thường được sử dụng làm chất kết dính. Hydroxypropyl cellulose là chất kết dính cao cấp và đã cho thấy hiệu quả kết dính tương đương và khả năng kết dính tốt khi được thêm vào dưới dạng dung dịch hoặc ở dạng bột khô (theo Skinner & Harcum, 1998).
Ngoài ra, đối với dạng bổ sung khô, các loại hạt có kích thước hạt mịn được ưa thích hơn vì tốc độ hydrat hóa nhanh hơn và sự đồng nhất của quá trình trộn và phân phối. Các lớp thô được ưu tiên để bổ sung dung dịch vì chúng phân tán dễ dàng hơn mà không bị vón cục.
Hydroxypropyl cellulose đặc biệt tốt trong việc giữ nước và tạo ra một lớp màng đóng vai trò như một rào cản chống thất thoát nước.
Cyclopentasiloxane là gì?
Cyclopentasiloxane (D5) là silicone được sử dụng trong các sản phẩm mỹ phẩm. Nó còn xuất hiện trong cấy ghép y tế, chất làm kín, chất bôi trơn và kể cả lớp phủ kính chắn gió.

D5 nó là hoạt chất không có màu, không có mùi cũng không nhờn và loãng như nước, không hấp thụ qua da mà bay hơi nhanh. Đặc tính đặc biệt của nó khiến Cyclopentasiloxane trở thành một thành phần được sử dụng trong nhiều loại sản phẩm mỹ phẩm cần khô nhanh như thuốc xịt tóc và chất chống mồ hôi.
D5 có đặc tính bôi trơn nó giúp tóc mượt hơn khi được thoa đều. Thoa lên da cũng có cảm giác mềm mại mượt mà.
Điều chế sản xuất
D5 được sản xuất từ dimethyldichlorosilane. Thủy phân diclorua tạo ra hỗn hợp gồm dimetyl siloxane mạch vòng và polydimethylsiloxane. Từ hỗn hợp này, các siloxane mạch vòng bao gồm D5 có thể được loại bỏ bằng cách chưng cất. Khi có mặt bazơ mạnh như KOH , hỗn hợp polyme/vòng được cân bằng, cho phép chuyển đổi hoàn toàn thành siloxan vòng dễ bay hơi hơn:
n ⁄ 5[(CH3)2SiO]n → n[(CH3)2SiO]5
D4 và D5 cũng là tiền chất của polyme. Chất xúc tác lại là KOH.
Cơ chế hoạt động
Hoạt chất Cyclopentasiloxane giúp texture mịn mượt hơn, cho phép sản phẩm phủ đều trên da. Hoạt chất này cũng hạn chế tình trạng vón cục ở các vùng da khô, đảm bảo texture được thoa đều trên da, cho phép tất cả vùng da đều đều thẩm thấu các thành phần của sản phẩm.
Giống như tất cả các Cyclomethicone hoạt chất này nhẹ dễ bay hơi. Đặc tính này khiến nó dần bay hơi khỏi da, các thành phần chính của sản phẩm còn lưu lại mà không gây nặng nề hay bết dính trên da.
Nhiều lợi ích của Cyclopentasiloxane trên da đã được công bố trên Skin Pharmacology and Physiology. Khi sử dụng sẽ tạo ra một lớp bảo vệ tạm thời trên da, ngăn ngừa tình trạng thoát hơi nước. Điều đó ngăn sự xâm nhập của vi khuẩn, bụi bẩn. Đặc biệt nó cho thấy hoạt chất không gây bí tắc cho da. Đặc điểm của nó là dễ bay hơi, đây là một ưu điểm tuyệt vời cho các loại da sung huyết vì chúng ngăn mồ hôi và bụi bẩn đi sâu vào lỗ chân lông.
Sodium carbomer là gì?

Sodium carbomer là một Homopolymer của Acid acetic, một hợp chất có cấu trúc lặp lại tạo nên các phân tử Acid acrylic và tồn tại ở dạng bột, màu trắng, không mùi, không vị, tan trong dầu, nước và alcohol.
Hoạt chất này có độ pH trung hòa 6.5, sau khi thêm nước thì độ pH của chất này vẫn ở vào khoảng từ 6 đến 7.5, không giống như hầu hết các Carbomer khác có tính axit và cần phải được trung hòa.
Sodium carbomer còn có khả năng chống lại tia cực tím.
Về công dụng, Sodium carbomer là hợp chất tạo đặc trong mỹ phẩm. Ở điều kiện bình thường, Sodium Carbomer đóng vai trò như một chất bảo quản. Khi dùng ở nồng độ thấp, thành phần này còn có tác dụng điều chỉnh độ nhớt của sản phẩm giúp sản phẩm khô nhanh, không tạo lớp màng trên da.
Điều chế sản xuất
Sodium Carbomer là một polymer tổng hợp có trọng lượng phân tử lớn của Acid acrylic, liên kết ngang với Aryl polyether.
Cơ chế hoạt động
Sodium carbomer có tác dụng làm đặc, ngoài ra còn phân phối và đình chỉ các chất rắn không hòa tan thành chất lỏng và ngăn chặn các phần dầu và chất lỏng của dung dịch tách ra.
Với khả năng hấp thụ và giữ nước, thành phần này có thể phồng lên gấp 1.000 lần so với thể tích ban đầu trước khi phân tán trong nước.
Thimerosal là gì?
Thimerosal - một hợp chất chứa thủy ngân, được dùng phổ biến với vai trò là chất bảo quản trong thuốc hay vắc xin đa liều (lọ chứa nhiều hơn một liều).
Có hai loại hợp chất thủy ngân, bao gồm ethyl thủy ngân – thuộc thành phần cấu tạo của thimerosal và methyl thủy ngân ở một số loài cá. Khi nồng độ methyl thủy ngân hấp thụ trong cơ thể chúng ta đạt đến ngưỡng nhất định sẽ có thể gây ngộ độc cho hệ thần kinh, miễn dịch, sinh sản, tim mạch, thậm chí còn là nguy cơ dẫn đến nhiều loại ung thư, gây tử vong.

Ngược lại, khả năng gây độc của ethyl thủy ngân giảm đi rất nhiều so với methyl thủy ngân do chúng được cơ thể chúng ta đào thải nhanh hơn.
Theo các cuộc nghiên cứu cho thấy, việc sử dụng chất thimerosal trong vắc xin dành cho trẻ nhỏ không gây ra/góp phần vào sự xuất hiện chứng bệnh tự kỷ. Điều này có nghĩa là không tồn tại mối liên hệ nào giữa thimerosal trong vắc xin và bệnh tự kỷ. Trên thực tế, tỷ lệ trẻ bị tự kỷ vẫn tiếp tục tăng mặc dù thimerosal không còn sử dụng trong vắc xin dành cho trẻ nữa. Điều này đi ngược lại với giả thiết ban đầu càng chứng minh thimerosal không có bất kỳ liên hệ nào với chứng tự kỷ.
Được đào thải dễ dàng ra khỏi cơ thể con người trong thời gian ngắn nên thimerosal không có điều kiện tích tụ đến ngưỡng có thể gây hại cho sức khỏe tổng thể của chúng ta.
Mặc dù vậy, để đề phòng tác hại có thể xảy ra, vào năm 1999 các nhà khoa học đã thống nhất loại bỏ thành phần thimerosal ra khỏi hầu hết các vắc xin dành cho trẻ nhỏ. Điều này sẽ giúp các bậc phụ huynh không còn lo ngại việc trẻ có khả năng bị nhiễm độc thủy ngân ngay từ khi còn bé. Tất nhiên, các nhà khoa học sẽ cải biến lại vắc xin cho trẻ nhỏ để bảo đảm chúng vẫn giữ được mức độ an toàn, hiệu quả và tính tinh khiết như trước đây dù không còn sử dụng thimerosal (ngoại trừ một số công thức của vắc xin cúm đa liều vẫn còn chứa thành phần thimerosal).
Hiện nay, những loại vắc xin cho trẻ nhỏ từng được bảo quản bằng thimerosal đã được sản xuất thành các lọ đơn liều. Nguyên nhân là chỉ có vắc xin đa liều mới cần chất bảo quản do dễ bị nhiễm khuẩn khi nhân viên y tế dùng đầu kim rút vắc xin kéo theo khả năng mang vi sinh vật từ bên ngoài vào lọ thuốc. Với loại vắc xin đơn liều thì chất bảo quản sẽ không còn cần thiết nữa.
Diethyltoluamide là gì?
Diethyltoluamide lần đầu tiên được đăng ký để sử dụng bởi công chúng vào năm 1957, và được sử dụng rộng rãi ở Hoa Kỳ. Hiện nay, có hơn 225 sản phẩm chống côn trùng thương mại có chứa Diethyltoluamide.
Diethyltoluamide là một chất lỏng gần như không màu, có mùi và là thành phần hoạt tính trong nhiều sản phẩm chống côn trùng.
Tên hóa học của Diethyltoluamide là N, N-diethyl-m-toluamide, công thức hóa học: C12H17NO. Nó là một thành viên của họ hóa chất N, N-dialkylamide. Công thức thực nghiệm của Diethyltoluamide là C12H17NO, và khối lượng phân tử là 191,26g/mol.
Công thức hóa học của Diethyltoluamide là C12H17NO
Nó rất dễ hòa tan trong etanol và isopropanol, là những dung môi phổ biến trong các công thức chống thấm có chứa Diethyltoluamide.
Điều chế sản xuất
Hãy đóng kín công ten nơ khi không sử dụng. Lưu trữ trong bao bì kín. Bảo quản ở nơi khô ráo, thoáng mát, tránh xa các chất không tương thích.
Cơ chế hoạt động
Cơ chế xua đuổi của Diethyltoluamide vẫn là một chủ đề của cuộc điều tra đang diễn ra. Một số nghiên cứu cho rằng Diethyltoluamide hoạt động bằng cách hình thành một rào cản hơi có mùi và vị khó chịu đối với côn trùng.
Một nghiên cứu thường xuyên được trích dẫn đã kết luận rằng côn trùng bị hấp dẫn bởi axit lactic trên da người và hơi từ Diethyltoluamide cản trở khả năng xác định vị trí axit lactic của chúng.
Các nghiên cứu khác đã thách thức lời giải thích này, tìm ra tác dụng xua đuổi của Diethyltoluamide chỉ với carbon dioxide là chất dẫn dụ. Một nghiên cứu gần đây hơn đã cung cấp các bằng chứng về hành vi và các bằng chứng khác chứng minh rằng hiệu quả đuổi muỗi là kết quả của việc muỗi phát hiện và tránh trực tiếp Diethyltoluamide.
Sodium Benzoate là gì?
Sodium Benzoate (hay còn gọi Natri Benzoate), công thức hóa học là C6H5COONa, muối của acid benzoic, có dạng bột trắng, không mùi, có tính tan mạnh trong nước, là một trong số 29 chất được dùng như chất phụ gia thực phẩm.
Sodium Benzoate là một chất bảo quản vì có khả năng tiêu diệt nấm mốc và vi khuẩn, thường dùng làm chất bảo quản trong các loại bánh kẹo, mứt, nước hoa quả, nước ngọt có gas, các loại nước xốt, súp thịt, ngũ cốc, sản phẩm từ thịt gia súc, gia cầm, thủy sản, nước chấm, sữa lên men, cà phê…

Ngoài ra, Sodium Benzoate còn được dùng trong kem đánh răng, hóa mỹ phẩm, dược phẩm như một chất bảo quản trong mỹ phẩm (ký hiệu quốc tế là E. 211). Theo quy ước đặc tính gây độc của Tổ chức quản lý độc chất quốc tế, Sodium Benzoate được xếp vào nhóm không gây ung thư, mà thuộc nhóm “Một số người cần tránh” (Certain people should avoid), vì nó có thể gây dị ứng cho đối tượng có cơ địa “nhạy cảm với hóa chất” (tương tự bột ngọt, đường lactose, sulphite…).
Bên cạnh đó, Sodium Benzoate còn là chất tạo hương thơm và chống ăn mòn cho sản phẩm. Khi kết hợp với caffeine trong Caffeine Sodium Benzoate, nó có thể có tác dụng chống nắng, và cung cấp màng bảo vệ UVB và chống oxy hóa cho da.
Ngoài dạng được điều chế hóa học, Sodium Benzoate cũng có thể được tìm thấy tự nhiên trong các loại trái cây như trái việt quất (cranberry), đào, mận, nho, táo, quế (thành phần chính là cinnamic acid, chất đồng chuyển hóa của benzoic acid), cây đinh hương (clove), nhóm cây bách (berries)… với hàm lượng từ 10-20mg/kg.
Điều chế sản xuất Sodium Benzoate
Sodium Benzoate được sản xuất bằng cách trung hòa axit benzoic với natri bicarbonate, natri cacbonat hoặc natri hydroxit.
Cơ chế hoạt động của Sodium Benzoate
Cơ chế hoạt động bảo quản của Sodium Benzoate hoặc Natri Benzoat phụ thuộc vào các phân tử undissociated, lipophilic không dissociable axit Benzoic E210 là mạnh mẽ, và dễ dàng đi qua màng tế bào, sau đó nhập vào trong tế bào, can thiệp với các mốc và vi khuẩn và tính thấm của màng tế bào vi khuẩn, cản trở sự hấp thụ của màng tế bào chống lại các axit amin.

Sodium Benzoate truy cập vào tế bào nội bào, có thể acid lí nội bào và ức chế hoạt động của các enzym hô hấp tế bào vi khuẩn, chơi một tác dụng bảo quản.
Benzoates là chất kháng sinh phổ rộng hoạt động tốt chống nấm men, nấm mốc và một số vi khuẩn, và ức chế các vi khuẩn khác nhau ở pH 4-5 dưới tầm bắn tối đa cho phép sử dụng.
Sodium Cocoamphoacetate là chất hoạt động bề mặt có nguồn gốc từ dầu dừa. Trong các sản phẩm chăm sóc da và cá nhân, thành phần này mang lại tác dụng làm sạch mềm mại, dịu nhẹ cũng như giúp tăng cường tạo bọt và dưỡng ẩm.

Sodium cocoamphoacetate tồn tại ở dạng dung dịch lỏng, có màu vàng nhẹ đến trong suốt, tan được trong nước lẫn ethanol. Chất này cũng tương thích với các chất điện giải và với các chất hoạt động bề mặt điện tích âm, điện tích dương và không ion.
Sodium cocoamphoacetate là hợp chất có phần đầu ưa nước còn phần đuôi kỵ nước nên nó có khả năng thu hút dầu và nước, giúp cho những thành phần khác nhau có trong công thức được hòa quyện. Đồng thời, Sodium cocoamphoacetate còn giúp loại bỏ khỏi da những bã nhờn và tạp chất giúp da được sạch sẽ, mịn màng hơn.
Ptfe là gì?
Danh pháp IUPAC: Poly(1,1,2,2-tetrafluoroethylene).
Tên gọi khác: Teflon, Flourogold, Polytef, Tetraflouroethene homopolymer.
Polytetrafluoroethylene (Ptfe) là một chất fluoropolymer tổng hợp của tetrafluoroethylene.
Polytetrafluoroethylene được Roy J. Plunkett tìm ra vào năm 1938 một cách tình cờ, khi đang làm việc cho DuPont tại New Jersey. Khi Plunkett cố gắng tạo ra một chất làm lạnh chlorofluorocarbon mới, khí tetrafluoroethylene trong chai áp suất của nó ngừng thoát ra trước khi trọng lượng của chai giảm xuống mức báo hiệu "rỗng". Ông phát hiện phía trong chai được phủ một lớp vật liệu trắng như sáp và trơn sau khi cưa cái chai quan sát. Phân tích cho thấy rằng nó đã được polyme hóa perfluoroethylen, với sắt từ bên trong thùng chứa đóng vai trò như một chất xúc tác ở áp suất cao.
Vật liệu mới này đã được cấp bằng sáng chế bởi các chất hóa học động học vào năm 1941 với tên gọi là nhựa flo mới và đăng ký nhãn hiệu Teflon vào năm 1945. Nhanh chóng đến năm 1961, khi chiếc chảo phủ Ptfe đầu tiên do Hoa Kỳ sản xuất được bán trên thị trường tại Hoa Kỳ với tên gọi “The Happy Pan”. Kể từ đó, không có gì ngoa khi nhìn lại, và dụng cụ nấu ăn chống dính đã là một trong những sản phẩm gia dụng phổ biến nhất được sản xuất bởi hàng ngàn nhà sản xuất và có mặt trên toàn thế giới.
Polytetrafluoroethylen là một chất rắn fluorocarbon, vì nó là một polyme trọng lượng phân tử cao bao gồm toàn bộ cacbon và flo. Ptfe kỵ nước bao gồm nước và tất cả các chất có chứa nước đều không làm ướt được Ptfe. Ptfe có một trong số ít chất rắn có hệ số ma sát cực kì thấp.
Công thức hóa học của Ptfe là (C2F4)n. Các đặc tính nổi bật của Ptfe là khả năng chịu nhiệt cao và thấp tuyệt vời, đặc tính cách điện, tính trơ hóa học, hệ số ma sát thấp và không dính trong một phạm vi nhiệt độ rộng lên đến 260 độ C.

Điều chế sản xuất Ptfe
Ptfe được cấu thành từ mạch thẳng của tetrafluoroethylen. Ptfe được điều chế bằng cơ chế trùng hợp gốc tự do trong môi trường nước, thông qua quá trình trùng hợp bổ sung tetraflouoethylen theo một quy trình hàng loạt.
-
Phương trình ròng là: n F2C=CF2 → − (F2C−CF2)n−
-
Vì tetrafluoroethylen có thể phản ứng mạnh tạo thành tetrafluoromethane (CF4) và carbon, nên cần có thiết bị đặc biệt cho quy trình sản xuất để ngăn chặn các điểm nóng có thể xảy ra phản ứng phụ nguy hiểm này. Quá trình này thường được sử dụng với persulfate, persulfate sẽ được đồng nhất để tạo ra các gốc sulfat: [O3SO−OSO3]2− ⇌ 2 SO4 −
-
Polyme cuối cùng được kết thúc bằng các nhóm este sunfate, chúng có thể bị thủy phân và tạo thành các nhóm cuối OH.
Ptfe dạng hạt được sản xuất thông qua quá trình trùng hợp huyền phù, trong đó Ptfe được lơ lửng trong môi trường nước chủ yếu bằng cách khuấy và đôi khi sử dụng chất hoạt động bề mặt như axit perfluorooctanesulfonic (PFOS) hoặc FRD-903 (GenX). Ptfe cũng được tổng hợp thông qua trùng hợp nhũ tương, trong đó chất hoạt động bề mặt là phương tiện chính để giữ Ptfe trong môi trường nước.
Cơ chế hoạt động
Một số đặc tính của Ptfe liên quan đến cơ chế hoạt động như sau:
-
Ptfe là một trong những vật liệu đáng tin cậy nhất về khả năng chống hóa chất. Nó chỉ bị tấn công bởi các kim loại kiềm nóng chảy, các hợp chất halogen hữu cơ như clo triflorua (ClF3) và oxy diflorua (OF2), và khí flo ở nhiệt độ cao.
-
Tính chất cơ học của Ptfe nói chung kém hơn nhựa kỹ thuật ở nhiệt độ phòng. Bổ sung chất làm đầy là chiến lược để khắc phục tình trạng thiếu hụt này.
-
Các đặc tính cơ học của Ptfe có thể bị ảnh hưởng bởi các biến số trong quá trình xử lý như áp suất, nhiệt độ đốt kết, tốc độ làm nguội, ... Ngoài ra, các biến số của polyme có thể ảnh hưởng khá lớn đến tính chất cơ học như khối lượng mol, kích thước hạt, phân bố kích thước hạt…
-
Ptfe có các đặc tính điện tuyệt vời như điện trở cách điện cao, hằng số điện môi cực thấp do cấu trúc đối xứng cao của các đại phân tử.
-
Ở môi trường nhiệt độ dưới 440 độ C Ptfe thể hiện độ ổn định nhiệt cao mà không bị ảnh hưởng đáng kể. Ở môi trường dưới 260 độ C các vật liệu Ptfe có thể được sử dụng một cách liên tục. Ptfe dễ bị tấn công bởi bức xạ, và sự suy thoái trong không khí bắt đầu khi liều lượng từ 0,02 Mrad.
Những đặc tính này đến từ cấu trúc điện tử đặc biệt của nguyên tử flo, liên kết bền vững từ liên kết cộng hóa trị của cacbon với flo, từ tương tác nội phân tử, tương tác liên kết giữa các chuỗi chính và các phân đoạn polyme flo hóa.
Chiết xuất bột ngọc trai là gì?
Chiết xuất bột ngọc trai là loại bột được nghiền nhỏ, mịn từ những viên ngọc trai. Chiết xuất bột ngọc trai này được biết đến với công dụng làm đẹp cho phái đẹp từ cổ xưa. Từ xưa giới vua chúa, quý tộc đã sử dụng bột ngọc trai để chăm sóc sắc đẹp. Nữ hoàng Ai Cập cũng đã dùng bột ngọc trai để chăm sóc sắc đẹp của mình.
Trong hoàng tộc Philippines, trẻ nhỏ đã được cho sử dụng bột ngọc trai để giúp cho làn da sáng đẹp và săn chắc.

Châu Âu cũng đã dùng bột ngọc trai để làm đẹp và chăm sóc sức khỏe cho các gia đình hoàng gia từ rất lâu đời. Trong y học phương Đông chỉ có 2 trường phái lớn đó là Trung Quốc và Ấn Độ sử dụng bột ngọc trai như một phương thức phối hợp.
Từ sau Công nguyên, thành phần ngọc trai này đã được sử dụng để làm đẹp. Trong lịch sử, Võ Tắc Thiên là nữ đế đầu tiên biết chăm sóc sắc đẹp bằng bột ngọc trai. Người ta cho rằng đây là cách giúp cho làn da khỏe mạnh, trắng sáng.
Ngoài sử dụng trên da để chăm sóc sắc đẹp, bột ngọc trai còn được dùng như một loại dược liệu quý để giúp ổn định thần kinh, giảm căng thẳng, tĩnh tâm.
Ở Ấn Độ bột ngọc trai cũng được sử dụng như một dược liệu để cân bằng và chống lão hóa da. Bột ngọc trai vừa có khả năng chống viêm vừa có tác dụng làm ấm cơ thể, giải nhiệt. Thậm chí, thành phần này còn được coi như thành phần của nước bùa yêu.
Điều chế sản xuất
Trước khi điều chế ngọc trai khâu đầu tiên là lựa chọn ngọc trai. Người ta sẽ chọn loại ngọc tinh khiết nhất sau đó đem khử trùng bằng nước sôi. Công đoạn nghiền bột sao cho thật nhỏ, mịn. Bột ngọc trai được bảo quản cẩn thận trong lọ thủy tinh hoặc sứ để nơi thoáng mát khô ráo và không có ánh nắng chiếu trực tiếp vào thành phẩm.
Cơ chế hoạt động
Thông tin về cơ chế hoạt động của chiết xuất bột ngọc trai còn rất hạn chế.
Disodium Edta là gì?
Ethylene diamine tetraacetic acid, viết tắt là EDTA, là một loại axit hữu cơ mạnh. NH2 và 4 gốc carboxyl COOH là hai nhóm amin được chứa trong cấu trúc của EDTA.
EDTA và các muối của nó thường ở dạng tinh thể hoặc dạng bột màu trắng, không bay hơi, có độ tan cao trong nước, có độ pH 10.5 – 11.5.
Có hai dạng EDTA chính thường được sử dụng trong các sản phẩm chăm sóc cá nhân gồm Tetrasodium EDTA và Disodium EDTA. Tetrasodium EDTA và Disodium EDTA khác nhau ở cấu trúc của các phân tử và độ pH. Nhưng hai loại này lại có công dụng tương tự nhau khi được ứng dụng trong mỹ phẩm và các sản phẩm chăm sóc cá nhân.
Disodium EDTA có khả năng cô lập các ion kim loại nặng, giúp sản phẩm không bị tác động bởi các phản ứng hóa học giữa kim loại và các hợp chất khác, tạo sự ổn định cho sản phẩm.
Ngoài ra, chất này có trong nhiều sản phẩm chăm sóc da và tóc như một chất bảo quản, giúp ngăn ngừa sự phát triển của vi khuẩn, nấm men và nấm mốc trong sản phẩm chăm sóc da. Tuy chất bảo quản không tốt khi dùng nhưng chúng giúp kéo dài thời hạn sử dụng sản phẩm. So với một số chất bảo quản tự nhiên, chất bảo quản tổng hợp cũng ít gây kích ứng da hơn và ít có khả năng tương tác với các thành phần khác trong công thức.
Ngoài công dụng chính là chất bảo quản, Disodium EDTA cũng được sử dụng để cải thiện khả năng tạo bọt của sản phẩm. Do đó EDTA thường có mặt trong xà phòng và chất tẩy rửa.

Điều chế sản xuất
EDTA lần đầu tiên được tổng hợp vào năm 1935 bởi Ferdinand Münz từ sự kết hợp của Ethylenediamine và Acid chloroacetic. Ngày nay, EDTA chủ yếu được tổng hợp từ Ethylenediamine, Formaldehyd và Natri cyanide.
Cơ chế hoạt động
Một trong những chức năng của Disodium EDTA là đóng vai trò như một tác nhân tạo phức. Disodium EDTA liên kết với các ion kim loại nặng và các nguyên tố vi lượng có trong nước cứng (loại nước có chứa hàm lượng các khoáng chất hòa tan dưới dạng các ion), từ đó làm cho chúng không còn hoạt động để ngăn chặn tác động bất lợi của chúng với sự ổn định của sản phẩm. Cụ thể, thành phần này ngăn không cho các kim loại này đọng trên da, tóc và da đầu. Sau khi các ion kim loại liên kết với EDTA, các ion kim loại vẫn ở trong dung dịch nhưng tính chất phản ứng giảm dần.
Các ion kim loại liên kết trong mỹ phẩm có thể đến từ nhiều nguồn khác nhau, đặc biệt từ các thành phần có nguồn gốc tự nhiên có thể có tạp chất kim loại. Ngoài ra, hệ thống nước hoặc các dụng cụ kim loại có thể chứa tạp chất. Nếu không được khử hoạt tính, các ion kim loại này có thể làm hỏng các sản phẩm mỹ phẩm bằng cách làm giảm độ trong, làm mất tính toàn vẹn của nước hoa và gây ra mùi ôi.
Mặc dù nước cứng không gây hại cho sức khỏe nhưng có thể làm ảnh hưởng đến tóc và da. Nước cứng làm tăng nguy cơ tích tụ kim loại trên tóc, khiến tóc nhuộm nhanh bị mất màu và làm tăng nguy cơ gãy rụng. Đồng thời nước cứng còn khiến việc rửa sạch da với xà phòng trở nên khó khăn hơn, dẫn đến da sẽ dễ bị khô và kích ứng. Disodium EDTA giúp chống lại tác động gây hại của nước cứng lên da. Nhờ đó, chất này đã được chọn để trở thành một thành phần đặc biệt trong các chất tẩy rửa trên da.
Việc Disodium EDTA hoạt động bằng cách liên kết với các ion kim loại trong dung dịch giúp ngăn các công thức mỹ phẩm không bị biến chất. Disodium EDTA bảo vệ tính toàn vẹn của các sản phẩm chăm sóc da, không làm thay đổi độ pH, mùi hoặc kết cấu. Ngoài ra, khi liên kết với canxi, sắt hoặc magiê, Disodium EDTA giúp tăng cường khả năng tạo bọt và làm sạch nên được sử dụng phổ biến trong các công thức chăm sóc da như một chất đồng bảo quản.
Sodium Hyaluronate là gì?
Sodium hyaluronate hay còn gọi là Natri hyaluronate là muối natri của Acid hyaluronic, một Glycosaminoglycan được phân bố rộng rãi trong chất nền ngoại bào của các mô liên kết, biểu mô và thần kinh của động vật có vú cũng như nội mô giác mạc.

Sodium hyaluronate được biết như một chất giữ ẩm và làm lành vết thương. Chất này gồm các phân tử nhỏ thấm vào da dễ dàng, hoạt động bằng cách kéo độ ẩm từ môi trường và giữ nước trong lớp hạ bì. Khi tuổi tác càng lớn, da có xu hướng khô và có nhiều nếp nhăn do mất nước. Sử dụng các sản phẩm chăm sóc da có chứa Sodium hyaluronate giúp giữ ẩm cho da, mang lại cho bạn làn da mịn màng, tươi trẻ và giảm các dấu hiệu lão hóa.
Ngoài tác dụng với làn da, Sodium hyaluronate cũng có lợi cho sức khỏe khớp và mắt.
Điều chế sản xuất
Chiết xuất Sodium Hyaluronate tự nhiên có thể tìm thấy trong lúa mì, từ sự lên men của vi khuẩn, từ cuống rốn của động vật có vú, từ mào gà hoặc do tổng hợp.
Cơ chế hoạt động
Sodium hyaluronate hoạt động như một chất bôi trơn của mô và đóng vai trò quan trọng trong việc điều chỉnh các tương tác giữa các mô lân cận. Chất này tạo thành một dung dịch nhớt có tính đàn hồi trong nước để bảo vệ cơ cho mô (mống mắt, võng mạc) và các lớp tế bào (giác mạc, nội mô và biểu mô).
Tính đàn hồi của dung dịch giúp hấp thụ áp lực cơ học và cung cấp đệm bảo vệ cho mô. Để tạo thuận lợi cho việc chữa lành vết thương, Sodium hyaluronate hoạt động như một phương tiện vận chuyển và bảo vệ, đưa các yếu tố tăng trưởng peptide và các protein cấu trúc khác đến nơi chờ thực hiện. Sau đó, các enzyme bị phân hủy và hoạt tính protein được giải phóng để thúc đẩy quá trình sửa chữa mô.
Sulforaphane là gì?
Sulforaphane là hoạt chất giàu lưu huỳnh và đã được khoa học chứng minh cung cấp lợi ích sức khỏe mạnh mẽ. Thành phần này được kích hoạt khi glucoraphanin tiếp xúc với enzyme myrosinase (enzyme này chỉ được giải phóng và kích hoạt khi cây bị hư hại). Điều này có nghĩa, các loại rau họ cải phải được cắt, băm hoặc nhai mới có thể giải phóng myrosinase và kích hoạt sulforaphane.

Hàm lượng sulforaphane có trong rau tươi (rau sống) là cao nhất. Theo nghiên cứu, bông cải xanh sống chứa lượng sulforaphane cao gấp mười lần so với bông cải xanh đã được nấu chín.
Cơ chế hoạt động
Sulforaphane hoạt động chủ yếu thông qua việc ức chế Histone DeAcetylase (HDAC, nhóm các enzyme tương tác với DNA và một số thứ liên kết xung quanh với DNA được gọi là "histones"), từ đó làm tăng hoạt động của một con đường chuyển hóa được gọi là
Keap1-Nrf2 pathway (bằng cách tăng hoạt động Nrf2), bảo vệ chống lại sự hình thành ung thư, độc tố cũng như sự oxy hóa quá mức.
Sản phẩm liên quan








